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ABSTRACT

Although mutation rates are a key determinant of the rate of evolution they are difficult to measure
precisely and global mutations rates (mutations per genome per generation) are often extrapolated from
the per-base-pair mutation rate assuming that mutation rate is uniform across the genome. Using budding
yeast, we describe an improved method for the accurate calculation of mutation rates based on the fluc-
tuation assay. Our analysis suggests that the per-base-pair mutation rates at two genes differ significantly
(3.80 3 10�10 at URA3 and 6.44 3 10�10 at CAN1) and we propose a definition for the effective target size
of genes (the probability that a mutation inactivates the gene) that acknowledges that the mutation rate is
nonuniform across the genome.

MUTATION rate is an important parameter in
evolution. It limits the speed of adaptation in

populations with beneficial mutations; in the absence
of beneficial mutations it sets the equilibrium fitness of
the population. Despite its importance, there are large
uncertainties in estimates of the per-genome per-
generation mutation rate. Estimating this parameter is
typically a three-step process: determining the mutation
rate to a particular phenotype, converting this pheno-
typic rate into a per-base-pair mutation rate in a partic-
ular gene, and extrapolating this local rate to the entire
genome. In this article we focus on the technical chal-
lenge of determining phenotypic mutation rates accu-
rately and the analytical task of determining the effective
target size of a gene, the probability that a mutation
somewhere in a defined segment of the genome pro-
duces a mutation with a specified phenotypic effect.

Three methods are commonly employed to measure
phenotypic mutation rates: mutation-accumulation as-
says, mutant accumulation assays, and fluctuation assays.
The mutation-accumulation assay involves passing a cul-
ture through recurrent bottlenecks, ideally of a single
cell/individual, such that all mutations are nearly neu-
tral. This is useful for determining the rate of mutations
affecting fitness since repeated bottlenecks will reduce
the effect of selection (Kibota and Lynch 1996; Zeyl

and Devisser 2001). This method works well in multi-
cellular organisms, where the population size can be
maintained at the bottleneck; however, in microorgan-
isms, where a visible colony must be allowed to form,
selection will still occur between the bottlenecks. Several

methods are available for estimating phenotypic muta-
tion rates from mutation-accumulation assays (Garcia-
Dorado and Gallego 2003); alternatively, direct se-
quencing can be used since all mutations occur in the
same genome (Denver et al. 2004; Haag-Liautard et al.
2007).

In the mutant-accumulation assay, the frequency of
a phenotype that is neutral in the environment of the
experiment but can be selected for in an alternative en-
vironment is monitored in an exponentially growing
culture by periodically plating an aliquot of the culture
onto selective medium. Once the population reaches a
size such that the probability of a new mutation occur-
ring in the next generation is approximately one, the
frequency of mutants will increase linearly with time.
Thus an accurate estimate of phenotypic mutation rate
requires a long intervals between frequency measure-
ments and these experiments typically last for hundreds
of generations. Because most of the population has not
accumulated the neutral mutation, beneficial mutations
will predominantly occur in cells lacking the neutral
mutation, thus slowing the accumulation of mutants.

In the fluctuation assay, many parallel cultures are
inoculated with a small number of cells, grown under
nonselective conditions, and plated to select for mutants
(Luria and Delbrück 1943). The number of mutations
that arise in each culture will follow the Poisson distri-
bution; however, the number of mutant cells per culture
will vary greatly since early mutations will lead to ‘‘jackpots,’’
cultures that contain a great many mutant individuals.

The simplest way to estimate the expected number
of mutations that occur in each culture (m) is from the
fraction of cultures with zero mutants, which should be
e�m. This method (P0) was used by Luria and Delbrück

(1943) in their original article describing the fluctua-
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tion assay. The full distribution of mutants per culture
(the Luria–Delbrück distribution) can be described by
a set of recursive equations (Ma et al. 1992). The most
accurate method for estimating m (Ma–Sandri–Sarkar
maximum likelihood) finds the m that gives the best fit
of the Luria–Delbrück distribution to the data (Sarkar

et al. 1992; Rosche and Foster 2000). By simulation,
Stewart (1994) calculates 95% confidence intervals
for m obtained using this method; however, for the con-
fidence intervals to be meaningful, the data must follow
the Luria–Delbrück distribution.

One way to estimate the quality of data is to plot the
cumulative distribution of mutant frequencies on a log–
log plot; Luria–Delbrück-distributed data presented
in this way will produce a straight line with slope �1
(Rosche and Foster 2000). Deviations from linearity
show that the data do not approximate a Luria–
Delbrück distribution. This graphical approach ignores
jackpots (since they lie far off the line) and cultures with
zero mutants (due to the log transformation). In this
article we introduce a simulation-based approach to
determining the quality of data from fluctuation assays
and show how this method can detect deviations from
the Luria–Delbrück distribution.

To convert phenotypic mutation rates to a per-base-
pair mutation rate we need to estimate the effective
target size for phenotypic mutation. Although the
concept of effective target size is important in evolution-
ary theory—it links the mutation rate to a particular
phenotype to the mutation rate per genome per
generation—it has not been explicitly defined. Previous
work has used ‘‘target size’’ to refer to the size of the gene
in which mutations are selected (Drake 1991) but could
also describe the number of mutations within a reporter
that are detectable. We propose a more general and
probabilistic definition of effective target size that en-
compasses the relationship between phenotypic and
genomic mutation rates. Our definition illustrates where
uncertainties in estimates of genomic mutation rate
arise and shows how this parameter can be calculated
from experimental data. In particular, we distinguish
between the effective target size based on the average
per-genome mutation rate and the locus-specific effec-
tive target size conditioned on a mutation event occur-
ring in a specific region of the genome.

We measured mutation rates to resistance to 5-
fluoroorotic acid (5-FOA), canavanine, and a-factor.
5-FOA is nontoxic, but can be converted into toxic
5-fluoro-uracil by the uracil biosynthesis pathway. The
product of the URA3 gene catalyzes a key step in this
process; therefore, 5-FOA predominantly selects for ura3
loss-of-function mutants. Canavanine is a toxic arginine
analog, whose uptake requires the arginine transporter.
Canavanine selects for loss-of-function mutants of this
transporter, which is encoded by the CAN1 gene. a-Factor
is a peptide pheromone secreted by mating-type a (MATa)
cells. Binding of the pheromone to the Ste2 receptor on

a MATa cell signals through a MAP-kinase cascade to ini-
tiate the mating-response genes and a G1 arrest (Dohlman

2002). Wild-type MATa cells secrete a protease, Bar1,
which degrades a-factor; deleting BAR1 prevents growth
on medium containing a-factor and allows us to measure
the rate of resistance to a-factor using the fluctuation
assay. There are at least 10 genes whose loss-of-function
results in a-factor resistance; therefore, we expect the
mutation rate to a-factor resistance to be an order of
magnitude higher than the mutation rate to 5-FOA and
canavanine resistance. We find the phenotypic muta-
tion rates to 5-FOA, canavanine, and a-factor resistance
to be 5.43 3 10�8, 1.52 3 10�7, and 3.07 3 10�6/
genome/generation, respectively. Combining our esti-
mates of phenotypic mutation rates and locus-specific
effective target sizes, we conclude that the per-base-pair
mutation rates at URA3 and CAN1 are 3.80 3 10�10 and
6.44 3 10�10/bp/generation, respectively, suggesting that
the mutation rate varies across the yeast genome.

MATERIALS AND METHODS

Strains and media: GIL104 is a haploid yeast strain derived
from the W303 background with genotype URA3, leu2, trp1,
CAN1, ade2, his3, bar1DTADE2, MATa. Yeast were grown in
synthetic complete (SC) medium (Sherman et al. 1974), SC
medium without uracil (SC �Ura), or SC medium with only
1% glucose (SCLG). The cultures that composed the fluctu-
ation assays were plated onto four types of selective media: 13
canavanine ½SC medium without arginine (SC �Arg), 60 mg/
liter l-canavanine (Sigma-Aldrich, St. Louis)�; 103 canavanine
(SC�Arg, 0.6 g/liter l-canavanine); 5-FOA ½SC�Ura, 1 g/liter
5-FOA (Sigma-Aldrich)�; and a-factor ½yeast extract, peptone,
dextrose (YPD), 10 mg/ml a-factor� (Bio-Synthesis, Lewisville,
TX). In preparation for plating several spots of mutant cultures
on each plate, the plates were overdried by pressing a Whatman
filter paper (grade 3, 90 mm) onto the plates, using a replica-
plating block and allowing the filter to remain in place for at
least 30 min. The filters remove �1 ml of liquid and plates can
be used for several days after filters have been removed.

Fluctuation assays: Fluctuation assays were performed on 10
clones of GIL104 to determine the rate at which cells mutated
to become resistant to 5-FOA, 103 canavanine, or a-factor.
Media and culture volumes were chosen such that a similar
number of mutants would be counted for each phenotype:
200 ml of SC, 100 ml of SC, and 10 ml of SCLG for resistance to
5-FOA, 103 canavanine, and a-factor, respectively.

To begin each fluctuation assay, a single clone was grown
overnight to saturation in SC �Ura, diluted 1:10,000 into the
appropriate medium, dispensed into 96-well plates, and sealed
with an aluminum plate seal to prevent evaporation. This
represents initial inocula of �2000, 1000, and 200 cells for
the cultures assayed for mutations to 5-FOA, 103 canavanine,
and a-factor resistance. Cultures were grown for 2 days at
30� without shaking (only 1 day for the low-glucose cultures,
which saturated after 1 day’s growth) and resuspended using
a Titramax 1000 orbital shaker (Rose Scientific, Cincinnati)
prior to plating. Twenty-four cultures were pooled, diluted,
and counted in triplicate using a Beckman Coulter particle
counter (Beckman Coulter, Fullerton, CA) to determine the
average number of cells per culture. The remaining 72 cul-
tures were spot plated onto overdried plates to select for
mutants: 200-ml cultures were spotted onto 12 5-FOA plates
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(six spots per plate); 100-ml cultures were spotted onto eight
103 canavanine plates (nine spots per plate); and 10-ml cul-
tures were brought up to 100 ml with sterile water and spotted
onto eight a-factor plates (nine spots per plate). A Tecan
Genesis liquid handler (Tecan U.S., Durham, NC) was used to
semi-automate spot plating. We assume that the loss of mutant
cells due to evaporation, liquid handling, and incomplete
plating efficiency is negligible. Under the conditions used, the
average numbers of cells per culture were 2.1 3 107, 1.3 3 107,
and 3.8 3 105, for 5-FOA, 103 canavanine, and a-factor,
respectively.

Plates were allowed to dry overnight at room temperature
and then incubated at 30� for 1, 2, or 5 days for a-factor, 103
canavanine, and 5-FOA, respectively, after which time the
number of mutants per spot was counted using a dissection
microscope. For 103 canavanine and a-factor plates we used a
size threshold: colonies ,1 mm at 103 magnification for
canavanine or 3 mm at 63 magnification for a-factor were
presumed to result from mutations that had occurred after the
cells were plated and were not counted. The choice of the size
cutoff was based on looking for a natural break in the colony-
size distribution. However, the size distribution was not bimodal;
therefore, it is reasonable to assume that some leaky mutants
were excluded. This is clear when we observe jackpots of mu-
tants smaller than our size threshold, which were excluded
from the analysis. For this reason, it is important that the
strains we sequenced to determine target size were chosen
from the plates from the fluctuation assays so that any leaky
mutants, which were excluded from the determination of mu-
tation rates, were also excluded from the calculation of target
size. Fluctuation assays for resistance to 13 canavanine were
performed similarly to those for 103 canavanine except 13
canavanine plates were counted 3 days postplating.

Analysis of fluctuation data: Fluctuation data were analyzed
by the Ma–Sandri–Sarkar maximum-likelihood method in
which the data are fitted to a model of the Luria–Delbrück
distribution on the basis of a single parameter m, the expected
number of mutation events per culture (Sarkar et al. 1992).
Mutation rate is calculated from the equation m¼ m/N, where
N is the average number of cells per culture (approximately
equal to the number of cell divisions per culture since the
initial inoculum is much smaller than N ). Ninety-five percent
confidence intervals on m and m were assigned using Equa-
tions 29 and 30 from Foster (2006).

The data were also fitted to a two-parameter model that
accounts for postplating growth. This model is a Luria–

Delbrück distribution overlaid with a Poisson distribution with
a rate Nmd ¼ md, where d is the mean number of cell divisions
(in which mutants could occur and be detected) in the lineage
of cells that were plated on the selective plates; d can be related
to the number of generations of growth postplating (g) by d¼
2g� 1. The probability distribution for the number of mutants
per culture in the two-parameter model is thus the joint
distribution of the Luria–Delbrück (parameter m) and the
Poisson (parameter n ¼ md); the m’s are the same assuming
that the mutation rate is the same for the postplating cell
divisions.

We used two tests to assess whether the one- or the two-
parameter models best fitted the data. Both relied on cal-
culating the probability of recovering the observed data given
the model. This probability, Pj, where j is the number of pa-
rameters in the model, was calculated as Pj ¼

Pmax
i¼0 pN

i ; where
pi is the probability of observing i mutants and N is the number
of independent cultures that produce i mutant colonies. The
log-likelihood-ratio test calculates L ¼ 2(log(P2) � log(P1)),
which is distributed as a x2-distribution with 1 d.f. Akaike’s
information criterion (AIC) calculates the parameter AIC ¼
2j � 2(log(Pj)) and asserts that the best fit is the one with the
lowest AIC value. The F test is not appropriate for these com-
parisons since it assumes a linear model with errors that are
drawn from the same normal distribution at each data point,
both assumptions that are violated by the data generated from
fluctuation assays.

Sequencing of ura3 and can1 mutants: Table 1 lists the
primers that were used to amplify and sequence the ura3 and
can1 alleles from 5-FOA and 103 canavanine-resistant colo-
nies, respectively. Prior to the isolation of genomic DNA,
5-FOA and 103 canavanine-resistant colonies were restreaked
on selective medium.

Computational analysis: The Ma–Sandri–Sarkar maximum-
likelihood analysis and the two-parameter fitting were per-
formed in Matlab (MathWorks, Natick, MA). Fitting to the
two-parameter model was achieved by optimizing m (with d
fixed), optimizing d (with m fixed), and repeating this process
until convergence. AIC was used to determine which model
best fits the data (Akaike 1974). Matlab was also used to simu-
late fluctuation data, calculate the sum-of-squares differences
between Luria–Delbrück distributions and data, and boot-
strap estimates of effective target sizes to generate 95% con-
fidence intervals. Matlab files for most of these operations are
available at http://murraylab.mcb.harvard.edu/fluctuation/
programs.htm.

TABLE 1

Primers used in this study

Primer name Sequence Purpose

URA3extF 59 ATCAAAGAAGGTTAATGTGG 39 PCR
URA3extR 59 TCATTATAGAAATCATTACG 39 PCR/sequencing
URA3extF3 59 TTGATTCGGTAATCTCCGAG 39 Sequencing
URA3intF2 59 TGGGCAGACATTACGAATGC 39 Sequencing
URA3intR2 59 CAAACCGCTAACAATACCTG 39 Sequencing
CAN1extF2 59 TCTTCAGACTTCTTAACTCC 39 PCR
CAN1extR2 59 ATAGTAAGCTCATTGATCCC 39 PCR/sequencing
CAN1ext/intF1 59 AAAAAAGGCATAGCAATGAC 39 Sequencing
CAN1intF2 59 GACGTACAAAGTTCCACTGG 39 Sequencing
CAN1intF3 59 TCAAAGAACAAGTTGGCTCC 39 Sequencing
CAN1intR2 59 TAGATGTCTCCATGTAAGCC 39 Sequencing
CAN1intR3 59 AACTTTGATGGAAGCGACCC 39 Sequencing
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RESULTS

Fluctuation assays and phenotypic mutation rates:
The accuracy of mutation rate estimates from fluctua-
tion assays depends on how the experiment is per-
formed and how the data are analyzed. We have made
improvements to both and consider each in turn.

Performing fluctuation assays: One way to increase the
accuracy of mutation rate estimates from fluctuation
assays is to increase the number of cultures (Stewart

1994). Typically, fluctuation assays are performed in test
tubes; however, to increase the throughput, we perform
the assays in 96-well plates. We plate 72 of the cultures to
selective medium to determine the number of mutants
per culture; the remaining 24 are used to determine
the average number of cells per culture (see materials

and methods). Using the 96-well format we can vary
the culture volume from 10 to 200 ml and can measure
mutation rates over two orders of magnitude (Table 2).

Rather than spreading cultures onto selective me-
dium, we spot cultures onto overdried plates, where they
spread uniformly over an area of 1.3–3 cm2, depending
on the volume spotted. This increases efficiency and
reduces the number of plates since up to nine cultures
can be spotted onto one plate.

The combination of spot plating and the 96-well
format allow for automation of the fluctuation assay. To
demonstrate this, we semi-automated the process using
a liquid handler; this enabled us to perform all fluc-
tuation assays described here—the equivalent of three
720-tube fluctuation assays—in parallel.

Analyzing fluctuation data and postplating growth on 13

canavanine: There are many methods for calculating
mutation rates from fluctuation data (Foster 2006),
of which the Ma–Sandri–Sarkar maximum-likelihood
method is preferred because it is the most accurate, it is

valid for any range of the expected number of mutation
events per culture (m), and 95% confidence intervals
can be calculated by an empirically determined set of
equations (Stewart 1994; Rosche and Foster 2000).
For estimates of mutation rates and 95% confidence
intervals generated from this method to be accurate the
data must approximate the Luria–Delbrück distribution.

We tested this approximation by using the Ma–Sandri–
Sarkar maximum-likelihood method to estimate m and
then plotting the predicted cumulative frequency dis-
tribution of mutants against the experimental data.
Fluctuation assays on 5-FOA produced close agreement
between predicted and observed distributions (Figure
1). In contrast, assays on 13 canavanine and a-factor
produced data that deviate significantly from the Luria–
Delbrück distribution. Compared to the expected dis-
tribution, cultures with a small number of mutants are
underrepresented and cultures with many mutants
are overrepresented in the 13 canavanine experiment
(Figure 1, one-parameter model). This deviation can be
explained as the combination of a Luria–Delbrück dis-
tribution and a Poisson distribution.

One possible explanation is that canavanine-sensitive
cells can divide and give rise to canavanine-resistant
mutations after they have been plated; the number of
additional mutant colonies will follow the Poisson dis-
tribution. We fitted the distribution of mutant fre-
quencies to a two-parameter model that incorporates
postplating growth and mutation. This model is the
joint distribution of a Luria–Delbrück distribution (with
parameter m) and a Poisson distribution (with param-
eter n¼md). The data from 13 canavanine fitted better
to the two-parameter model (Figure 1).

We quantified the improvement of the fit by two
methods. The first is to compare the best log likelihood

TABLE 2

Phenotypic mutation rates

Mutation rate (mutations/genome/generation)

Clone a-FactorR (310�6) CanR (310�7) 5-FOAR (310�8)

A 5.51 (4.31–6.82) 2.08 (1.67–2.51) 6.49 (4.89–8.24)
B 5.51 (4.31–6.81) 1.81 (1.44–2.20) 4.77 (3.53–6.15)
C 6.28 (4.96–7.70) 2.21 (1.77–2.69) 7.19 (5.49–9.07)
D 6.58 (5.23–8.04) 1.88 (1.51–2.29) 5.08 (3.73–6.58)
E 5.60 (4.40–6.90) 2.06 (1.66–2.50) 4.48 (3.25–5.85)
F 6.07 (4.81–7.44) 1.87 (1.49–2.28) 6.70 (5.10–8.45)
G 5.35 (4.21–6.59) 1.76 (1.41–2.14) 4.74 (3.50–6.12)
H 6.05 (4.79–7.42) 2.05 (1.65–2.49) 5.01 (3.69–6.47)
I 6.00 (4.76–7.36) 1.79 (1.43–2.17) 7.03 (5.33–8.90)
J 5.50 (4.35–6.76) 2.09 (1.67–2.55) 3.05 (2.11–4.11)
Average 6 SD 5.85 6 0.41 1.96 6 0.16 5.45 6 1.34
Combined 5.86 (5.46–6.28) 1.95 (1.83–2.08) 5.43 (4.97–5.91)

Mutation rates to a-factor resistance, canavanine resistance (CanR), and 5-fluoroorotic acid resistance (5-
FOAR) for 10 clones of GIL104. Parentheses indicate the 95% confidence intervals calculated using Equations
29 and 30 from Foster (2006). The combined data set treats the 10 72-tube fluctuation assays as one 720-tube
fluctuation assay.
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calculated under one- and two-parameter models. As
long as a large number of cultures are used, twice the
difference between the best one- and two-parameter
scores ½L¼ 2(log(P2 Param)� log(P1 Param)� is distributed
as x2 with 1 d.f. This means that if the best two-parameter
score is .1.92 log units better than the best one-
parameters score the probability is .0.95 that the two-
parameter model is a better fit to the data. The second
method was to use the AIC, which uses both the log
likelihood and the number of parameters in calculating
a score to find the model that best fits the data. Both are
described in more detail in materials and methods.

For fluctuation assays on 13 canavanine, both the log-
likelihood-ratio test and the AIC indicate that the data
are best fitted by the two-parameter model. For fluctu-
ation assays on 5-FOA, there is no improvement of fit
using the two-parameter model. To minimize postplat-
ing mutation we increased the canavanine concentra-
tion 10-fold and counted the plates 1 day earlier. The
data from 103 canavanine more closely approximate
the Luria–Delbrück distribution (Figure 1). Although
the two-parameter model still gives a slightly better fit,
according to both the log-likelihood-ratio test and the
AIC, the data are best fitted by the one-parameter model.
For the fluctuation assay on a-factor, the data are best
fitted by the two-parameter model; however, both models
fail to capture all features of this distribution (Figure 1).

Phenotypic mutation rates: Fluctuation assays were per-
formed to determine mutation rates to a-factor, 103

canavanine, and 5-FOA resistance for 10 isogenic clones
of a strain from the W303 background (GIL104); the
data were analyzed using the one-parameter and two-
parameter models (Tables 2 and 3, respectively). For
each assay, the log-likelihood-ratio test and the AIC were
applied to determine which model best fitted the data

(Table 3). All fluctuation assays on a-factor are best
described by the two-parameter model; whereas, all
fluctuation assays on 5-FOA are best described by the
Luria–Delbrück distribution (the one-parameter model).
For 103 canavanine, five fluctuation assays according
to the log-likelihood-ratio test, or six according to the
AIC, are best fitted by the two-parameter model.

Using the combined data from the 10 clones (effec-
tively a fluctuation assay with 720 parallel cultures) and
the two-parameter model we determine phenotypic
mutation rates to a-factor, 103 canavanine, and 5-FOA
resistance to be 3.07 3 10�6, 1.52 3 10�7, and 5.43 3

10�8, respectively. For 5-FOA resistance, the data are best
described by the one-parameter model (d ¼ 0 for the
two-parameter model, meaning that postplating growth
and mutation does not occur); therefore, we can use
Equations 29 and 30 of Foster (2006) to assign a 95%
confidence interval to our estimate of mutation rate.
This yields a confidence interval of 4.97–5.91 3 10�8 per
generation (Table 2). For the two-parameter model
we determined confidence intervals by simulation. For
each combined 720-culture fluctuation assay we deter-
mined the most-likely values for m and d, given the data.
To gauge the expected variation in these parameters, we
simulated 1000 fluctuation assays by sampling the
combined Luria–Delbrück/Poisson distribution using
parameters determined from the data. We take the 95%
confidence intervals for our estimate of m to be the values
of m that encompass 95% of the simulated experiments.
From this we calculate the 95% confidence intervals on
the two-parameter model to be 2.65–3.62 3 10�6, 1.34–
1.71 3 10�7, and 4.78–5.87 3 10�8 for a-factor, 103

canavanine, and 5-FOA resistance, respectively.
Mutational spectra and target size: Mutational spectra:

We wanted to convert our phenotypic mutation rates to

Figure 1.—Results from three 72-tube
fluctuation assays using GIL104 clone A
plated onto 13 canavanine, 5-FOA, 103
canavanine, and a-factor. Solid circles
show the cumulative distribution of the
data. Solid curves indicate the cumulative
Luria–Delbrück (one-parameter model)
distributions fit to the data with parameter
m ¼ 4.80, 1.31, 2.82, and 1.97 for 13 can-
avanine, 5-FOA, 103 canavanine, and
a-factor, respectively. The thick shaded
curve is the two-parameter model of post-
plating growth fit to the data with m ¼
2.31, d ¼ 2.62; m ¼ 2.39, d ¼ 0.37; and
m ¼ 1.10 and d ¼ 1.42 for 13 canavanine
and 103 canavanine, respectively. The one-
parameter and two-parameter models are
the same for 5-FOA. Using Akaike’s infor-
mation criterion (Akaike 1974), the
5-FOA and 103 canavanine fluctuation
assays are best described by the one-
parameter model; whereas, the 13 canava-
nine and a-factor fluctuation assays are best
described by the two-parameter model.
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per-base-pair mutation rates. The material for this con-
version is the mutational spectra; from the fluctuation
assays we sequenced 237 ura3 alleles and 227 can1 alleles
from 5-FOA- and 103 canavanine-resistant strains, re-
spectively (the identity of all 464 mutant alleles is avail-
able in the supplemental information at http://www.
genetics.org/supplemental/). Thirty 5-FOA-resistant
mutants contain wild-type URA3 alleles; 29 of these
mutants are uracil prototrophs. It has been reported
that mutations in FUR1 can confer this phenotype; how-
ever, we failed to find any mutations within the coding
sequence of this gene for any of the 29 5-FOA-resistant
uracil prototrophs (data not shown). None of the 207
ura3 mutants are prototrophic, and each contains a
single mutation or two mutations within a few nucleo-
tides. There are 167 bp substitutions (64 nonsense and
103 missense), 22 single-bp deletions, 3 2-bp deletions,
3 single-bp insertions, one 3-bp insertion, two large tan-
dem duplications, and nine double mutations (Figure
2). All 227 103 canavanine-resistant mutants contain
a single mutation or closely adjacent mutations at the
CAN1 locus. We find 150 bp substitutions (70 nonsense
and 80 missense), 55 single-bp deletions, 8 single-bp
insertions, one 2-bp insertion, 10 double mutations, and
3 complex mutations including a can1 allele contain-
ing a 27-bp deletion and a 30-bp tandem duplication
(Figure 3).

Per-base-pair rate of nonsense mutations: From the results
thus far, we can calculate the per-base-pair mutation rate
to nonsense mutations at the CAN1 and URA3 genes.
First we need to correct the phenotypic mutation rate to
5-FOA resistance to take into account that only 207 of

237 5-FOA mutants are URA3 mutants. This results in
a mutation rate for loss of function of 4.75 3 10�8 for
URA3 and 1.52 3 10�7 for CAN1. If we multiply these
rates by the fraction of nonsense mutations in the
mutational spectra we find that the rates of nonsense
mutations at URA3 and CAN1 are 1.47 3 10�8 and 4.69 3

10�8, respectively. For URA3 and CAN1, we counted the
number of possible nonsense substitutions from the known
sequences of these genes. URA3 is 804 bp; therefore,
there are 2412 possible substitutions (804 bp 3 3 pos-
sible substitutions per base pair). Of these, 123 result in
nonsense mutations. By dividing these rates by the
number of possible nonsense substitutions and multi-
plying by 3, since there are 3 possible mutations at each
base, we find that the nonsense mutation rate normal-
ized per base pair is 3.58 3 10�10 for URA3 and 6.21 3

10�10 for CAN1. Repeating the above analysis for all 10
fluctuation assays at CAN1 and URA3 from Table 3 we
find that the per-base-pair nonsense mutation rates dif-
fer significantly at these two loci (Wilcoxon rank sum,
P , 1.83 3 10�4). These calculations were performed
with mutation rates from the two-parameter model, cor-
recting for postplating growth and mutation on cana-
vanine plates. Had we used the one-parameter model,
the difference in mutation rates between URA3 and
CAN1 would have been greater, since the one-parameter
model overestimates the phenotypic mutation rates to
canavanine resistance.

Definition of effective target size: We define a target size
to perform two calculations: determining the genomic
mutation rate given experiments that measure the rate
of mutation at a particular locus and predicting the rate

TABLE 3

Fitting fluctuation data to a two-parameter model of postplating growth

a-Factor resistance 103 canavanine resistance 5-FOA resistance

Clone
Mut. rate

(10�6)
Div.

postplating P(LLR) AIC
Mut. rate

(10�7)
Div.

postplating P(LLR) AIC
Mut. rate

(10�8)
Div.

postplating

A 3.07 1.42 0.0005 �10.0 1.76 0.37 0.26 0.7 6.49 0
B 3.66 0.95 0.01 �4.1 1.16 1.08 0.005 �6.0 4.77 0
C 4.17 0.96 0.01 �4.7 1.5 0.94 0.02 �3.7 7.19 0
D 2.89 2.45 ,0.0001 �14.4 1.19 1.12 0.007 �5.2 4.97 0.03
E 2.14 2.74 ,0.0001 �24.6 1.53 0.67 0.03 �2.7 4.48 0
F 3.34 1.48 0.0002 �11.6 1.46 0.54 0.1 �0.6 6.7 0
G 2.94 1.46 0.0007 �9.4 1.69 0.08 0.74 1.9 4.74 0
H 2.61 2.32 ,0.0001 �20.4 1.88 0.18 0.49 1.5 5.01 0
I 2.56 2.45 ,0.0001 �19.8 1.48 0.42 0.21 0.4 7.03 0
J 3.36 1.17 0.001 �8.1 1.55 0.72 0.04 �2.2 3.05 0
Average

6 SD
3.07 6 0.59 1.74 6 0.68 1.52 6 0.23 0.61 6 0.36 5.44 6 1.34 ,0.01

Combined 3.07 1.66 ,0.0001 �135.3 1.52 0.57 ,0.0001 �26.8 5.43 0

Mut. rate is the phenotypic mutation per genome per generation. Div. postplating is the total number of cell divisions after plating
that can give rise to mutants. We show two statistical tests for whether the fit is improved by using a two-parameter model that includes
the generation of mutants after plating; P(LLR) is the probability from a log-likelihood-ratio test that the one-parameter model
should be preferred, and AIC reports the values of the Akaike information criterion, where negative values indicate that the two-
parameter model is preferred. Italic values indicate a preference for the two-parameter model. Both tests are explained in more detail
in materials and methods. The combined data set treats the 10 72-tube fluctuation assays as one 720-tube fluctuation assay.
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at which a particular phenotype arises given a genomic
mutation rate. This requires that we deal with two prob-
lems: variation in the base pair substitution rate across
the genome and differences between base pairs in the
probability that a substitution at that base produces a
mutant phenotype. Allowing the target size to depend
on the location of the gene seems counterintuitive,
but is essential if we want to consider the effects of
rearrangements (man made or evolutionary) that alter
the location of the gene. We deal with the different
substitutions at the same base pair by defining the target
size to be the number of base pairs that would account
for the observed mutation rate if every substitution at each
of these bases produced the mutant phenotype. As an
example, consider the target size for nonsense muta-
tions in a gene with 150 bp at which a single substitution
could produce a nonsense codon and 24 bp (such as the
C:G base pair in a UCA codon) at which two different
substitutions both yield nonsense codons. The target
size for nonsense mutations would be 150/3 1 24 � (2/3)¼
66 bp, meaning the gene behaves as if it had 66 bp at
which any substitution would produce a nonsense codon
and that we could derive the genomic mutation rate by
dividing the observed rate of nonsense mutations in this
gene by 66.

There is no neat formula for the fraction of substi-
tutions that give missense mutations, and each gene will
have a different distribution of base pairs where zero,
one, two, or all three possible substitutions produce mu-
tant phenotypes. We deal with this complexity by esti-
mating the number of possible base pair substitutions
that give rise to mutant phenotypes and dividing by
three, to produce a target size that assumes that for any
base pair in the target, all three substitutions produce
the mutant phenotype.

We define effective target size as the size of the
genome, G, multiplied by the probability that introduc-
ing a single genomic mutation (this could be a base pair
substitution, insertion/deletion, transposition, etc.) will
result in the phenotype of interest:

t ¼ G � Pfmutation results in phenotype jmutation in genomeg:

Thus, the effective target size to canavanine resistance is

tCanR ¼ G � Pfmutation results in CanR jmutation in genomeg:

We can specify the effective target size given a particular
class of mutation. For instance, the target size for mu-
tation to canavanine resistance by way of a base pair sub-
stitution is

tCanR jBPS ¼ G � PfBPS results in CanR jBPS in genomeg:

Furthermore, we can restrict the region of the genome
in question to define a locus-specific effective target size.
For example, the locus-specific effective target size for
canavanine resistance by way of a base pair substitution
at the CAN1 locus is

tCAN1
CanR jBPS ¼ ð1773 bpÞ � PfBPS results in CanR jBPS at CAN 1g;

where 1773 bp is the size of the CAN1 locus. Note that
there are two relationships that give the genomewide
average mutation rate per base pair per generation
(m̂bp): the mutation rate to a given phenotype (mCanR for
the mutation rate to canavanine resistance) divided by
the target size for such mutations (tCanR ) and the over-
all, genomewide mutation rate (Ug) divided by the length
of the genome (G),

m̂bp ¼
mCanR

tCanR

¼ Ug

G
;

where mCanR is the mutation rate to canavanine resis-
tance, m̂bp is the genomewide average mutation rate per
base pair per generation, and Ug is the mutation rate per
genome per generation. Similarly, the average mutation
rate per base pair per generation at the CAN1 locus
(mCAN1

bp ) is the mutation rate to canvanine resistance
(mCanR ) divided by the locus-specific, effective target
size for mutations to canavanine resistance at CAN1,
mCAN1

bp ¼ mCanR=tCAN1
CanR : The locus-specific target size

and mutation rate, tCAN1
CanR and mCAN1

bp ; are related to the
genomewide target size and mutation rate, tCanR and
m̂bp; through the parameter lCAN1, which is the ratio of
the mutation rate at the CAN1 locus compared to the
genomewide average; l ¼ 1 identifies loci where the
mutation rate equals the genomic average, loci where l ,

1 are coldspots, and those where l . 1 are hotspots:

lCAN1 � tCAN1
CanR ¼ tCanR ;

and

mCAN1
bp ¼ lCAN1 � m̂bp:

Calculation of effective target size and the per-base-pair
mutation rate: The effective target size to canavanine
resistance, tCanR ; is difficult to determine experimentally;
however, from mutational spectra we can determine the
locus-specific effective target size to canavanine resis-
tance conditioned on a mutation at the CAN1 locus,
tCAN1

CanR : Table 4 provides a summary of the calculations of
this target size and the per-base-pair mutation rate at
CAN1 and URA3. To calculate tCAN1

CanR ; we first rewrite it as

tCAN1
CanR ¼ fBPS � tCAN1

CanR jBPS 1 findel � tCAN1
CanR jindel;

where fBPS and findel are the frequency with which base
pair substitutions and insertion, deletion, or other DNA
rearrangements (which we collectively refer to as indels)
occur. Assuming that all indels in CAN1 result in loss of
function, tCAN1

CanR jindel is 1773 bp. To determine tCAN1
CanR jBPS we

separate the observed base pair substitutions into non-
sense and missense (70 and 80, respectively). CAN1 con-
tains 226 possible nonsense substitutions, 54 of which
we found (as expected, some mutations were identified
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multiple times). The 80 missense mutations represent
63 unique substitutions. Assuming that we identified the
same proportion of detectable missense and nonsense
mutations, we can calculate the number of missense
mutations conferring canavanine resistance as 63(226/
54) ¼ 264. Since we want our effective target size to be
the number of base pairs at which any substitution would
produce a mutation and there are three possible sub-
stitutions at each base, the locus-specific effective target
size for canavanine resistance at the CAN1 locus by way
of missense and nonsense mutations is 264/3 ¼ 88 bp
and 226/3 ¼ 75 bp, respectively. From the CAN1
sequence, we know the location of every possible non-
sense mutation. For the missense mutations we know
that there are 264 possible mutations; however, our
method is blind to the locations of the mutations other
than those identified in our mutational spectra. A locus-
specific effective target size for missense mutations of 88
bp could represent 88 positions where any of the three
possible substitutions causes a phenotype, 264 positions

where only 1 of 3 substitutions causes a phenotype, or
something in between.

Combining locus-specific effective target sizes for
nonsense and missense mutations we find that

tCAN1
CanR jBPS ¼ 88 1 75 bp ¼ 163 bp:

This locus-specific effective target size indicates that
163/1773 (9%) of base pair substitutions at the CAN1
locus result in canavanine resistance. To calculate the
mutation rate per base pair per generation by way of
base pair substitutions, we need to consider that only
150 of 226 mutations detected at the CAN1 locus were
base pair substitutions; therefore,

mCAN1
bpjBPS ¼

1:52 3 10�7ð150=226Þ
163 bp

¼ 6:15 3 10�10=bp=generation:

We can now calculate the mutation rate per base pair
per generation for all mutations. The frequency of base

TABLE 4

Data summary

URA3 CAN1

Sequenced mutations 237 227
Mutations at locus 207 227
Fraction at locus 0.87 1.00

Mutation rate to resistance 5.43 15.2
Rate of loss of function of locus 4.74 15.20

Nonsense mutations found 64 70
Fraction of total mutations 0.31 0.31
No. of unique nonsense mutations 42 54
Fraction of possible unique nonsense mutations observed 0.34 0.24

Missense mutations found 103 80
Fraction of total mutations 0.50 0.35
No. of unique missense mutations 66 63
Insertion/deletion/other mutations found 40 77
Fraction of total mutations 0.19 0.34

Base pairs 804 1773
Possible substitutions (bp 3 3) 2412 5319

Possible nonsense substitutions 123 226
Possible nonsense substitutions leading to resistancea 123 226
Fraction of nonsense substitutions leading to resistancea 1 1

Possible missense substitutions 2289 5093
Possible missense substitutions at URA3 leading to resistance 193
Possible missense substitutions at CAN1 leading to resistance 264
Fraction of missense substitutions leading to resistance 0.08 0.05

Target size for loss of function via base pair substitution (bp) 104 163
Target size for loss of function via insertion/deletion/otherb (bp) 804 1773
Effective target size (bp) 125 236

Phenotypic mutation rate (10�8) 5.43 1.52
Mutation rate at locus (10�8) 4.75 1.52
Mutation rate per base pair at locus (10�10) 3.80 6.44

a We assume that all nonsense mutations result in loss of function.
b We assume that all insertion/deletion/other mutations result in loss of function; therefore the target size for

these mutations is the size of the gene.
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pair substitutions and indel mutations in the CAN1
mutational spectrum is 150/226 (�66%) and 77/226
(�34%), respectively, but only 9% of base pair sub-
stitutions result in canavanine resistance. Thus the
fraction of mutations that are substitutions, fBPS; is
actually 0.95 ½ fBPS ¼ (0.66/0.09)/((0.66/0.09) 1 0.34)�
and those that are indels, findel; is only 0.05. Using these
values, we estimate the locus-specific effective target size
to canavanine resistance at the CAN1 locus to be

tCAN1
CanR ¼ ð0:95Þð163 bpÞ1 ð0:05Þð1773 bpÞ ¼ 236 bp;

therefore,

mCAN1
bp ¼ 1:52 3 10�7

236 bp
¼ 6:44 3 10�10 =bp=generation:

Similar calculations for URA3 show that

tURA3
5-FOAR jBPS ¼ 104 bp;

and

tURA3
5-FOAR ¼ 125 bp:

Taking into account that only 207 of the 237 5-FOA-
resistant mutants sequenced were ura3 mutants, the rate
of mutation to 5-FOA resistance at URA3 is 4.75 3 10�8/
cell/generation. Thus we calculate

mURA3
bpjBPS ¼

4:75 3 10�8ð167=207Þ
104 bp

¼ 3:68 3 10�10=bp=generation;

and

mURA3
bp ¼ 4:75 3 10�8

125 bp
¼ 3:80 3 10�10 =bp=generation:

DISCUSSION

We have improved the execution and analysis of
the fluctuation assay and have developed methods for
asking whether observed data are derived from a Luria–
Delbrück distribution. Our results suggest that the per-
base-pair mutation rate is different in different parts of
the genome and that the vast majority of mutations are
single-base-pair substitutions.

Analyzing fluctuation data: The Ma–Sandri–Sarkar
maximum-likelihood method is the most accurate method
for estimating the expected number of mutants per
culture (m) from fluctuation data; however, this method
assumes that the data follow the Luria–Delbrück distri-
bution. We have shown that postplating proliferation
and mutation of canavanine-sensitive cells on 13 canavanine
plates can be detected since it produces a deviation from
the expected Luria–Delbrück distribution. If the data
are not corrected, this leads to an overestimation of the

mutation rate. One can correct for this by fitting the
data to a two-parameter model that accounts for post-
plating growth or largely eliminate it by increasing the
concentration of canavanine. Other processes that intro-
duce error into mutation rate estimates such as differ-
ential growth rates between mutants and nonmutants
(Zheng 2005) and poor plating efficiency (Stewart

et al. 1990; Stewart 1991) will also produce deviations
from the expected Luria–Delbrück distribution. There-
fore, we suggest that fitting fluctuation data to the
cumulative distribution and comparing the sum-of-
squares differences with simulated data should be used
as a general method for assaying the quality of data
resulting from fluctuation assays.

We can assign significance to deviations from the
Luria–Delbrück distribution by simulation. Data from
the 13 canavanine fluctuation assay (Figure 1) give a
maximum-likelihood value of m ¼ 4.80. We calculated
the sum-of-squares differences between the cumulative
distribution of the data and the Luria–Delbrück distri-
bution with m ¼ 4.80. To determine the expected sum-
of-squares differences, we simulated 10,000 72-tube
fluctuation assays by sampling from the Luria–Delbrück
distribution with m ¼ 4.80 and calculated the sum-of-
squares differences for each simulated experiment. We
find that only 3.5% of the simulated experiments have a
poorer fit to the Luria–Delbrück distribution than the
observed 13 canavanine data compared to 30 and 41%
for 103 canavanine and 5-FOA, respectively.

Mutational spectra: We sequenced 237 5-FOA-resis-
tant ura3 alleles and 227 103 canavanine-resistant can1
alleles to determine the locus-specific effective target
size for phenotypic mutations. From these data sets we
can garner additional information regarding the muta-
genic processes leading to loss of function at URA3 and
CAN1. Nonsense mutations represent a larger fraction
of base pair substitutions in the can1 data set (47% vs.
38%). This indicates that a larger fraction of missense
mutations cause loss of function for URA3 (10.9% vs.
6.8% as calculated by dividing the number of possible
loss-of-function missense mutations by the number of
possible missense mutations). This difference is reflected
in our calculation of locus-specific effective target size
where, although the coding sequence of CAN1 is 2.2
times larger, the effective target size for loss of function
by way of base pair substitutions is only 1.6 times larger.
Loss-of-function mutations in our mutational spectra are
overrepresented at conserved residues (P ¼ 1.5 3 10�5,
Wilcoxon rank sum, A. Singhal and A. Segre, data not
shown). In our compiled URA3 and CAN1 mutational
spectra we identified 88 single-bp insertions/deletions
in which deletions were overrepresented by 7:1 (P ,

0.001, chi square). Of the base pair substitutions, 206
were transversions and 111 were transitions (Table 5).
This is consistent (P . 0.25, chi square) with the 2:1
ratio of transversions to transitions we expect if all sub-
stitutions are equally probable.
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There are two ways we can test whether mutations
occur randomly within the target sequences. Since we
know every position where a nonsense mutation can
occur we can ask if mutations fall randomly over these
sites. When looking at the distribution of nonsense
mutations we assume that all nonsense mutations result
in loss of function. For URA3 this assumption is reason-
able since our data set includes a nonsense mutation
eight amino acids before the stop codon removing the
last 1% of the protein. Dividing the URA3 and CAN1
sequences into fifths we find that the observed number
of nonsense mutations in each region does not differ
significantly from expectation (URA3, observed, 10, 10,
19, 10, 15; expected, 13, 12, 12, 11, 16, P . 0.05, chi
square; CAN1, observed, 10, 18, 17, 14, 11; expected, 14,
15, 13, 13, 15, P . 0.05, chi square).

In addition, we can test for mutational hotspots/
coldspots by asking if the number of times we found a
given base pair substitution deviates from what we would
expect from binomial sampling. For URA3 the numbers
of mutations we identified zero, one, two, three, or four
times are 206, 71, 18, 12, and 6. These deviate signifi-
cantly from the expectation of binomial sampling (184,
98, 26, 5, and 1; P , 0.01, chi square). Similarly, for
CAN1 the numbers of mutations we identified zero, one,
two, three, or four times are 373, 91, 20, 5, and 1, which
deviate significantly from binomial sampling (360, 111,
17, 2, and 0; P , 0.05, chi square). Therefore, although
we do not see regional biases in our mutational spectra
we do find particular substitutions to be over/under-
represented, possibly reflecting biases due to local
sequence context effects. The variation we find in the
yeast URA3 and CAN1 genes is significantly less than the
degree of variation seen across the LacI gene in
Escherichia coli (Miller et al. 1977).

We found 20 instances of multiple mutation events
occurring in the same strain. One can1 allele contains a
27-bp deletion and a 30-bp imperfect duplication
separated by 312 wild-type bp. The remaining 20 were
multiple mutation events occurring within a few nucleo-
tides of each other, 9 in ura3 and 11 in can1 (Table 6). In
one case the same complex mutation, a double deletion
and base pair substitution, was found in two can1 strains
that were adjacent during much of the processing
(restreaking, genomic DNA preparation, PCR, and
sequencing); therefore, this may represent a single event
that was inadvertently sampled twice. Half of the mul-
tiple mutation events are interspersed with one or more
bases of wild-type sequence; therefore, multiple muta-
tion events must have occurred. These events may rep-
resent instances where lesion bypass has occurred and
the multiple mutations result from decreased fidelity of
translesion polymerases. The translesion polymerase
Polz can efficiently extend unpaired primer termini
resulting from incorporation opposite a lesion and it is
thought that up to half of all spontaneous mutations
occur in a Polz-dependent manner. (Rattray and
Strathern 2003; Prakash et al. 2005).

Effective target size: The mutation rate per genome
per generation is a fundamental parameter in molecu-
lar evolution. Here we introduce the effective target size
(t) to phenotypic mutation as a way to link the mutation
rate per genome per generation to the measurable

TABLE 6

Multiple mutation events

Class Gene
Intervening
WT bases

Substitution/substitution URA3 0
URA3 0
URA3 0
CAN1 0
URA3 1
CAN1 1
CAN1 2

Substitution/deletion CAN1 0
CAN1 0
URA3 1
CAN1 1
CAN1 2
CAN1 3

Substitution/insertion URA3 0
URA3 0
CAN1 0
CAN1 0
URA3 1
URA3 3

Double deletion/substitution CAN1 8

Insertion/deletion CAN1 312

WT, wild type.

TABLE 5

Summary of sequenced ura3 and can1 mutations

Mutation URA3 CAN1

T / C 4 4
T / A 14 9
T / G 5 5
C / T 16 20
C / A 40 21
C / G 11 9
A / T 8 4
A / C 6 5
A / G 0 1
G / T 28 20
G / C 9 12
G / A 26 40
Transitions 46 65
Transversions 121 85
One-base-pair deletions 22 56
One-base-pair insertions 3 8
Complex 15 13
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phenotypic mutation rate. We have defined effective
target size as

t ¼ G � Pfmutation results in phenotype jmutation in genomeg:

We use a bottom-up approach based upon mutational
spectra to calculate the effective target size to pheno-
typic mutation. For example, for canavanine resistance
we first calculate the effective target size to phenotypic
mutation by way of a base pair substitution at the CAN1
locus (tCAN1

CanR jBPS ¼ 163 bp). Intuitively this means that if
one considers only base pair substitutions, the CAN1
gene is effectively 163 bp where any base pair sub-
stitution will result in canavanine resistance. This value
is then used to calculate the locus-specific effective target
size to canavanine resistance by way of any mutation
(tCAN1

CanR ¼ 236 bp), meaning that CAN1 is effectively 236 bp
where any mutation will result in canavanine resistance.
To calculate tCAN1

CanR one needs to weight the effective tar-
get sizes for canavanine resistance by way of each parti-
cular class of mutation by the frequency with which that
mutation occurs.

The effective target sizes that are calculated are valid
only as long as the frequencies of particular classes of
mutation are conserved and, therefore, are likely to vary
between strain backgrounds and growth conditions.
Varying the selective medium may alter the fraction of
missense mutations; for example, some ura3 mutants
will form colonies at low concentrations of 5-fluoroorotic
acid but not at high ones. Therefore, we determined the
effective target sizes by sequencing mutant ura3 and
can1 alleles from the same plates that were used for the
fluctuation assays.

Genes of similar lengths may have very different ef-
fective target sizes. Mutational hotspots such as micro-
satellite sequences and polynucleotide runs will increase
the effective target size by increasing the local rate of
frameshift mutations. Mutator alleles not only increase
the mutation rate, but also influence the effective target
size by altering the mutational spectra. In addition, since
mutation rates are believed to vary across the genome
(Ito-Harashima et al. 2002; Hawk et al. 2005), the
effective target size may change if a gene is moved to a
different location. In the context of this experiment, if
CAN1 were moved to a location in the genome where
the mutation rate is twofold higher than at its endoge-
nous locus, the target size will be twice as large, since,
given the definition of effective target size, moving the
gene doubles the probability of a mutation resulting in
canavanine resistance given a single mutation occurring
anywhere in the genome. In our notation, we do not
explicitly state that the CAN1 gene is at an endogenous
location. We do, however, indicate that our estimate of
locus-specific effective target size is conditioned upon a
mutation within the 1773-bp region of the CAN1 coding
sequence. We specify this with the superscript CAN1
(tCAN1

CanR ) to distinguish this locus-specific effective target
size from the effective target size for a mutation occur-

ring anywhere within the genome (tCanR ). tCAN1
CanR and

tCanR are related by the hotspot parameter l,

lCAN1 � tCAN1
CanR ¼ tCanR :

Target size for mutations conferring resistance to a-
factor: If we take m̂bp to be the average of the per-base-
pair mutation rates at CAN1 and URA3, 5.12 3 10�10, we
can estimate the effective target size for mutation to
a-factor resistance as

taF R ¼ maF R

m̂bp

¼ 3:07 3 10�6

5:12 3 10�10 ¼ 5996 bp:

Taking the mean ratio of target size to gene size for
CAN1 and URA3, 0.14, this suggests that the total length
of genes in which a loss-of-function mutation results in
a-factor resistance is 41.5 kbp. Summing over the lengths
of known targets (STE2, STE4, STE5, STE7, STE11, STE12,
STE20, STE50, FAR1, and FUS1) accounts for only 18.6
kbp. There are four possible explanations for this
inconsistency. There could be unidentified genes whose
inactivation results in a-factor resistance; however, given
the degree to which the mating pathway has been
studied, it is unlikely that enough components remain
unidentified to account for this difference. It could be
that many more loss-of-function missense mutations are
possible for signaling proteins than for enzymes or
transporters. The third possibility is that a change of the
mating-type locus from MATa to MATa provides an
additional class of mutation to a-factor resistance.
Although the strain used in this study is heterothallic,
a spontaneous double-strand break at the MAT locus
can be repaired off of the silent HMLa cassette, result-
ing in mating-type switching and a-factor resistance.
The rate of mating-type switching in heterothallic yeast
is estimated to be between 10�7 and 10�6 (Klein and
Wintersberger 1988). An additional possibility is that
CAN1 and URA3 are located in regions that are coldspots
compared to the genomewide average mutation rate
(or one or more of the genes involved in a-factor resis-
tance could be located in a mutational hotspot; how-
ever, since the target for a-factor resistance is spread
over the genome, it likely averages over local hotspots
and coldspots). Asserting that the known genes that can
mutate to confer a-factor resistance had an average l of
1 predicts lCAN1 ¼ 0.55 and lURA3 ¼ 0.32.

Mutation rate per base pair per generation: We mea-
sured phenotypic mutation rates and, from the same
experiments, the locus-specific effective target sizes to
phenotypic mutation. Our results indicate that the per-
base-pair mutation rate at URA3 and CAN1 is mURA3

bp ¼
3.80 3 10�10 and mCAN1

bp ¼ 6.44 3 10�10/bp/generation,
respectively. Drake (1991) obtains similar values, but
his method differs slightly. He also utilizes fluctuation
assays and mutational spectra; however, rather than cal-
culate the effective target size to phenotypic mutation,
Drake estimates the number of base pair substitutions
that occurred in the coding sequence as 64/3 times the
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number of nonsense mutations detected, ignoring mis-
sense mutations detected in the mutational spectra. He
then calculates a correction factor (the inverse of the
detection frequency) to scale the mutation rate and then
divides the corrected mutation rate by the size of the
open reading frame.

In principle Drake’s method and ours should yield
similar values for the per-base-pair mutation rate. Ana-
lyzing our data using the Drake method yields estimates
of mURA3

bp ¼ 3.49 3 10�10 and mCAN1
bp ¼ 5.92 3 10�10/bp/

generation, respectively. Drake converts the per-base-
pair mutation rate to a per-genome mutation rate by
scaling to the size of the genome. Since these estimates
of the per-base-pair mutation rate are specific for par-
ticular loci, scaling up is accurate only if mutation rate is
uniform across the genome. Several experiments sug-
gest that mutation rate varies across the genome by at
least an order of magnitude (Ito-Harashima et al. 2002;
Hawk et al. 2005). On a genomic scale, URA3 and CAN1
are relatively close (83 kb apart on the left arm of chro-
mosome V) yet our two-point estimates of the per-base-
pair mutation rate differ by a factor of 1.7.

To determine if this difference in mutation rate is
significant, we need to place confidence limits on our per-
base-pair mutation rate estimates. We showed that the
95% confidence intervals for our estimates of phenotypic
mutation rate are 1.34–1.71 3 10�7, and 4.78–5.87 3 10�8

for resistance to 103 canavanine and 5-FOA, respectively.
Since only 207 of 237 5-FOA-resistant mutations are URA3
mutants, the 95% confidence interval for the rate of loss
of function of URA3 is 4.17–5.13 3 10�8.

We used a bootstrapping method to generate 95% con-
fidence intervals around our estimates of the effective
target size by discarding 25% of our mutational spectra
data and recalculating the effective target sizes. This pro-
cess was iterated 10,000 times for both tURA3

5-FOAR and tCAN1
CanR :

The ranges of these distributions are 99.90–162.82 and
190.64–285.60 for tURA3

5-FOAR and tCAN1
CanR : Excluding the ex-

treme 2.5% at either end of the distribution, 95% of the
values lie between 109.17 and 140.81 for tURA3

5-FOAR and
between 207.16 and 257.73 for tCAN1

CanR : To place conserva-
tive confidence limits on the per-base-pair mutation rate
estimates we took the lower bound for phenotypic muta-
tion rate divided by the upper bound for the effective
target size and vice versa. For example, the lower bound
on mURA3

bp is 4.17 3 10�8/140.81 ¼ 2.96 3 10�10. Perform-
ing this for both URA3 and CAN1 yields nonoverlapping
confidence intervals of 2.96–4.70 3 10�10 and 5.21–8.24
3 10�10/bp/generation for mURA3

bp and mCAN1
bp ; respec-

tively. It is possible this observed difference reflects a
difference in the ability to detect mutations at these two
loci and not an underlying difference in the per-base-pair
mutation rate. However, differences in the plating effi-
ciency or phenotypic lag, which would alter the ability
to detect mutants, are expected to produce devia-
tions from the Luria–Delbrück distribution, which is
not observed in our data (Table 3).

In this article we have shown that the per-base-pair
mutation rate varies on two length scales: between dif-
ferent positions within the CAN1 and URA3 genes and
between the genes themselves. It is possible that these
two observations are related; however, since we measure
forward mutation rates over large targets, we likely average
over the local sequence effects. Therefore, the differ-
ence in the per-base-pair mutation rate we observe be-
tween CAN1 and URA3 is most likely due to a mutation
rate variation on a larger scale. Ito-Harashima et al.
(2002) find that the frequencies of ochre suppressor
mutations, detected at eight identical tRNA-Tyr alleles,
vary by a factor of�20. Hawk et al. (2005) show that the
rate of microsatellite frameshift mutations varies 16-fold
across the genome, due in part to variation in the effi-
ciency of mismatch repair. Consistent with this, we show
that the per-base-pair per-generation spontaneous mu-
tation rate is nonuniform across the genome and varies
�2-fold between two reporters, 83 kb apart, on the left
arm of chromosome V.
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